Versatile Dehydrogenative Aromatization of α,β-Unsaturated Cyclohexenones with VO(OEt)Cl₂-Me₃SiOTf

Toshikazu HIRAO,* Makoto MORI, and Yoshiki OHSHIRO*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565

An oxovanadium compound obtained from VO(OEt)Cl2 and AgOTf or Me₃SiOTf efficiently induced dehydrogenative aromatization of α , β -unsaturated cyclohexenones to give aryl ethyl ethers in good yields.

Dehydrogenative aromatization is an important oxidative transformation in organic synthesis.¹⁾ A previous paper demonstrated that VO(OEt)Cl₂ induces aromatization of α , β -unsaturated cyclohexenones.²⁾ The oxidation reaction is considered to depend on the oxidative capability of Lewis acid, VO(OEt)Cl₂. The higher acidity is expected to increase the reactivity of oxovanadium compounds. We herein report that a combination of VO(OEt)Cl₂ and AgOTf or Me₃SiOTf constitutes the more reactive oxidant.

The oxovanadium compound obtained by treatment of VO(OEt)Cl₂ with AgOTf was found to induce dehydrogenative aromatization of 2-cyclohexen-1-one in ethanol at room temperature for 5 h giving ethyl phenyl ether [VO(OEt)Cl₂: AgOTf: 2-cyclohexen-1-one = 1:1:1, 75%; 2:2:1, 93%].

$$R^{1} \xrightarrow{R^{2}} R^{3} \xrightarrow{VO(OEt)Cl_{2}-Me_{3}SiOTf} OEt \\ R^{1} \xrightarrow{R^{2}} R^{3} \xrightarrow{EtOH} R^{1} \xrightarrow{R^{2}} R^{3}$$

More conveniently, Me₃SiOTf was able to be used instead of AgOTf. VO(OEt)Cl₂ was treated with one equiv. of Me₃SiOTf in dichloromethane followed by addition of 2-cyclohexen-1-one and ethanol to produce ethyl phenyl ether (Table 1).³⁾ It should be noted that one equiv. of the oxovanadium species was also enough for the oxidation as observed in the case of VO(OEt)Cl₂-AgOTf. This finding is in contrast to the reactivity of VO(OEt)Cl₂. More than two equiv. of VO(OEt)Cl₂ are required to complete the oxidative transformation in the absence of Me₃SiOTf because VO(OEt)Cl₂ is considered to work as a one-electron oxidant. Reaction only with VO(OEt)Cl₂ under similar conditions led to a complex mixture with a decrease in the yield of ethyl phenyl ether.

Ethyl phenyl ether was produced even in dichloromethane as a solvent, suggesting that the oxovanadium ethoxide participates in the introduction of ethoxy group. The formation of trimethylsilyl chloride was detected by glc in the reaction mixture of VO(OEt)Cl₂ and Me₃SiOTf. The oxovanadium triflate⁴⁾ appears to be generated in situ via exchange of chloride with triflate, which also seems to be the case with VO(OEt)Cl₂ and AgOTf.

This method is extended to dehydrogenative aromatization of 2-cyclohexen-1-ones bearing ethoxycarbonyl group at 4- or 6-position to give the corresponding aryl ethyl ethers. The phenol derivative was obtained as a major product in the latter reaction possibly due to the presence of ethoxycarbonyl group at the ortho position. Two equiv. of both VO(OEt)Cl₂ and Me₃SiOTf were, however, used for a good conversion to ethyl 4-ethoxy-2-

α,β-Unsaturated Cyclohexenone	VO(OEt)Cl ₂ /equiv.	Me ₃ SiOTf/ equiv.	Solvent	Product Yield/% b)
	1 1 2	1 1 -	EtOH CH ₂ Cl ₂ EtOH	OEt	82 (15) 12 (46) 24 (35)
	1 1 2	1 2 2	EtOH EtOH EtOH	OEt	45 (29) 55 (7) 94 (0),76 ^{c)}
COOEt	t 2	2	EtOH	COOEt COOEt COOEt 50° 34:	OH COOEt 66

Table 1. Dehydrogenative Aromatization of α,β-Unsaturated Cyclohexenonesa)

a) Reaction conditions, 0 °C, 1 h; room temperature, 1 h. b) The yields were determined by glc based on the starting material unless otherwise stated. The numbers in parentheses represent the amount (%) of the recovered starting material. c) Isolated yield.

methylbenzoate. The yield was not raised on treatment with 1 equiv. of VO(OEt)Cl2 and 2 equiv. of Me3SiOTf.

The oxovanadium reagent obtained from VO(OEt)Cl₂ and AgOTf or Me₃SiOTf is powerful and versatile for oxidation. Further investigation is now in progress.

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture.

References

- 1) For example, F. M. Hauser and S. A. Pogany, Synthesis, 1980, 814.
- 2) T. Hirao, M. Mori, and Y. Ohshiro, J. Org. Chem., 55, 358 (1990).
- 3) A typical procedure is as follows. To a solution of VO(OEt)Cl₂ (1.0 mmol) in dichloromethane (1 mL) was added Me₃SiOTf (1.0 mmol) at 0 °C. After stirring at 0 °C for 1 h, 2-cyclohexen-1-one (1.0 mmol) and ethanol (1 mL) were added. The resulting mixture was stirred at 0 °C for 1 h and then at room temperature for 1 h. Ether and 5% aqueous HCl were added to the mixture, which was extracted with ether. The combined ethereal solution was washed with saturated aqueous NH₄Cl, saturated aqueous NaHCO₃, and brine. TLC of the concentrated residue gave the desired ethyl phenyl ether.
- 4) It is reported that VO(OTf)₃ is insoluble in common organic solvents: S. Singh, Amita, M.S. Gill, and R. D. Verma, *J. Fluorine Chem.*, **27**, 133 (1985).

(Received February 12, 1991)